
Graph Neural Network-Based Symbolic Regression Using Deep Learning

Amber Li
amli@mit.edu

Samuel Kim
samkim@mit.edu

1. Introduction

We can train neural networks to be very good at cer-
tain tasks, but they generally fail at extrapolating far beyond
training data and or providing us with interpretations of the
data. Symbolic regression, on the other hand, is a technique
for extracting meaning from data by producing models to
explain and generalize beyond the training data.

The Equation Learner (EQL) architecture proposed in
[1], [2] helps make neural network-based models more in-
terpretable and better at extrapolation, particularly for sym-
bolic regression tasks. Researchers have integrated the EQL
network into other deep learning architectures and found
that the system performs various learning and extrapolation
tasks much better than a standard neural network-based ar-
chitecture [3].

At the same time, researchers have also found sym-
bolic models by applying symbolic regression to the inter-
nal components of graph neural network (GNN) models [4].
The intuition is that GNNs provide a strong inductive bias
well-suited for data from interacting particle systems, which
facilitates the discovery of analytical equations to describe
such systems. This leads us to wonder if it is possible to
build a neural network architecture that has the same ca-
pabilities, but which can be trained end-to-end to produce
the same analytical equations without having to separately
apply symbolic regression.

In the remaining sections, we describe the extension of
the EQL network to learning the forces involved in interact-
ing particle systems. We accomplish this by integrating an
EQL network into the GNN architecture from [4], and we
compare the resulting analytic expressions with those pro-
duced in the original work. Overall, the integrated archi-
tecture consistently produces the correct equations for the
spring and 1/r forces in either 2 or 3 dimensions and with
either 4 or 8 particles. Notably, it was able to produce a sim-
pler, “unrotated” version of the force equations, which the
original architecture was not able to do. Additionally, the
new model was able to produce a mostly correct equation
for the 1/r2 force in 2 dimensions with 4 particles.

2. Related Work
The EQL network learns functions in a supervised man-

ner. The training data consists of inputs mapped to desired
outputs, and the neural network contains specially-chosen
activation functions, such as the identity, square, sin, and
multiplication. An example with two hidden layers is shown
in Figure 1, borrowed from [3], although the EQL may have
more hidden layers and additional, different activation func-
tions. In order for the EQL to produce interpretable results,
sparsity must be enforced so that the model finds a sim-
plest possible solution to fit the data. We enforce sparsity
by adding regularization to the loss function as in [3].

Figure 1: Equation Learner (EQL) Network Example

This project differs from the literature mentioned [4] in
two key ways.

First, the architecture is modified. Figure 2 is borrowed
from [4] and shows the structure of the original graph neu-
ral network used for extracting analytical relations from the
training data. We’re interested specifically in learning the
force law between pairs of interacting particles, which is en-
coded in the graph network by the “edge model.” The orig-
inal edge model (or “message function”) in [4] is a multi-
layer perceptron with two hidden layers and ReLU activa-

1



tions. In this work, we use the same overall GNN structure
but replace the edge model with an EQL network with two
hidden layers and our own activation functions.

This modified architecture creates our second key dif-
ference: since the EQL is easily integrated into other deep
learning architectures such as the GNN, this means that the
whole model trains end-to-end using backprop. After train-
ing, we do not need to perform extra symbolic regression
steps using software as done in [4] but can simply extract
the desired equations from the learned EQL weights.

Figure 2: Graph Neural Network Architecture and Interpre-
tation

3. Methods
The main contributions of this work were (1) creating the

integrated GNN+EQL architecture and (2) producing suc-
cessful experimental results for the spring force, 1/r, and
1/r2 forces.

3.1. Symbolic Regression Pipeline

The steps needed to perform symbolic regression using
the integrated GNN+EQL architecture are:

1. Generate training data
Produce the accelerations of n bodies in d dimensions
over 1000 time steps.

2. Train the model
Specify the input variables to the message function.
Save models and messages over time during training.

3. Get the force equations
Choose the top d message features by largest standard
deviation. Extract EQL weights, filter, and pretty print.

3.2. Architecture and Training Details

The activation functions used inside the EQL for all ex-
periments were:

• 8 constant functions

• 16 identity functions

• 8 product functions

For the spring and 1/r experiments, the input variables
to the EQL message function were [dx, dy, r, 1/r,m1,m2].
We give both r and 1/r as inputs due to the limitations of the
EQL network in performing division. For the the 1/r2 ex-
periments, the input variables were [dx, dy, 1/r3,m1,m2].

In all experiments, the EQL network within the message
function of the GNN used 2 hidden layers and 100 output
message features. Normally, for an experiment with parti-
cles interacting in d dimensions, we would expect the mes-
sage function to output dmeaningful features, but [4] found
that using 100 message features and applying L1 regulariza-
tion on the messages to constrain message dimensionality
worked the best, so we took the same approach. The regu-
larization weight used in all experiments, unless otherwise
explicitly stated, was 1.0.

To get the final result of a symbolic regression task, the
force equation is extracted from the trained model by sort-
ing the 100 message features in order of decreasing variance
and taking the top d features. The intuition is that these out-
put features contain the most information and therefore are
the most significant features.

For the spring and 1/r experiments, models were trained
for 200 epochs. For the 1/r2 experiments, models were
trained for 1000 epochs. All other hyperparameters and
training settings were kept the same as in [4]. Specifically,
we use batch gradient descent with an Adam optimizer. The
learning rate is set according to the 1cycle learning rate pol-
icy with initial learning rate 0.001. See code implementa-
tion for more details. Other training schedule hyperparam-
eter settings were tried, but they did not work as well.

3.3. Force Equations

Experiments used the spring, 1/r, and 1/r2 forces. Be-
low, we give the potential functions, U, used to generate the
training data, while φe refers to the edge model of the GNN
(see Figure 2), also known as the message function, repre-
senting the expected force equations. The variable r is the
distance between two particles plus 0.01 to avoid singular-
ities. The message functions given below are for particles
in 2 dimensions, so the expected φe each have two message
features.

3.3.1 Spring force

Potential:
U = (r − 1)2

Message function, unrotated (simplest form):

φe =

[
c1(∆x)(1 − 1/r) + b1
c2(∆y)(1 − 1/r) + b2

]

2

https://github.com/samuelkim314/DeepSymRegTorch
https://github.com/samuelkim314/DeepSymRegTorch


Message function, rotated:

φe =

[
c1(∆x) cos θ(1 − 1/r) − c2(∆y) sin θ(1 − 1/r) + b1
c1(∆y) sin θ(1 − 1/r) + c2(∆y) cos θ(1 − 1/r) + b2

]

3.3.2 1/r Force

Potential:
U = m1m2 log r

Message function, unrotated:

φe =

[
c1(∆x)m1m2

r2 + b1
c2(∆y)m1m2

r2 + b2

]

3.3.3 1/r2 Force

Potential:
U = −m1m2

r

Message function, unrotated:

φe =

[
c1(∆x)m1m2

r3 + b1
c2(∆y)m1m2

r3 + b2

]
4. Results

The experiments and their results are organized by by
number of particles n and dimensions d.

4.1. Spring Force

4.1.1 n=4, d=2

For reference, this is the rotated version of the expected
message function again:

φe =

[
c1(∆x) cos θ(1 − 1/r) − c2(∆y) sin θ(1 − 1/r) + b1
c1(∆y) sin θ(1 − 1/r) + c2(∆y) cos θ(1 − 1/r) + b2

]
Example result from the original GNN [4]:

0.60(∆x)(1 − 1/r) + 1.36(∆y)(1 − 1/r)
?
0
...
0


Example result from the GNN+EQL:
Trial 1:

0.02(∆x)(1 − 1/r) − 0.05(∆y)(1 − 1/r)
0.05(∆x)(1 − 1/r) + 0.02(∆y)(1 − 1/r)

0
...
0



Trial 2: 
0.05(∆x)(1 − 1/r)
−0.05(∆y)(1 − 1/r)

0
...
0


The results of this experimental setting were correct

across all trials, with 1 out of 5 trials producing a simplest,
unrotated version of the message function (as in the trial 2
example). This is an improvement over the model in [4],
which was not able to produce an unrotated version of the
spring force.

Note that all but d = 2 of the message features produce
an expression of 0, showing that we have successfully en-
forced sparsity through regularization on the edge model.

4.1.2 n=8, d=2

For reference, this is the rotated version of the expected
message function:

φe =

[
c1(∆x) cos θ(1 − 1/r) − c2(∆y) sin θ(1 − 1/r) + b1
c1(∆y) sin θ(1 − 1/r) + c2(∆y) cos θ(1 − 1/r) + b2

]
No example result from the original GNN was given in

[4].
Example result from the integrated GNN+EQL:

−0.06(∆x)(1 − 1/r) + 0.04(∆y)(1 − 1/r)
0.04(∆x)(1 − 1/r) + 0.06(∆y)(1 − 1/r)

0
...
0


The results for this experiment were also consistently

correct, although the GNN+EQL model was not able to pro-
duce an unrotated equation.

4.1.3 n=4, d=3

This is the unrotated form of the expected message function:c1(∆x)(1 − 1/r) + b1
c2(∆y)(1 − 1/r) + b2
c3(∆z)(1 − 1/r) + b3


Example results from the GNN+EQL:
Trial 1:

−0.01(∆x)(1 − 1/r) + 0.03(∆y)(1 − 1/r)
0.05(∆x)(1 − 1/r) − 0.02(∆z)(1 − 1/r)
0.05(∆y)(1 − 1/r) + 0.03(∆z)(1 − 1/r)

0
...
0


3



Trial 2:

0.05(∆x)(1 − 1/r) + 0.03(∆y)(1 − 1/r)
−0.03(∆x)(1 − 1/r) + 0.05(∆y)(1 − 1/r)

0.05(∆z)(1 − 1/r)
0
...
0


The GNN+EQL model produced correct results consis-

tently. The extracted equations took on different rotated
forms, some simpler and other more complicated: for ex-
ample, the “trial 2” example above is a rotation about the
z-axis, while the “trial 1” example has some rotation about
all three axes.

4.2. 1/r Force

4.2.1 n=4, d=2

Unrotated form of expected message function:[
c1(∆x)m1m2

r2 + b1
c2(∆y)m1m2

r2 + b2

]
Example result from the GNN+EQL:

−0.02(∆x)m2

r2

−0.02(∆y)m2

r2

0
...
0


The results from this experimental setting were consis-

tently unrotated and in the same form as the example shown.
However, note that the m1 is missing from the expression.

4.2.2 n=8, d=2

Unrotated form of expected message function again, for ref-
erence: [

c1(∆x)m1m2

r2 + b1
c2(∆y)m1m2

r2 + b2

]
Example result from the GNN+EQL:

−0.02(∆x)m2

r2

−0.02(∆y)m2

r2

0
...
0


Similar to the n = 4, d = 2 experiments, these results

were consistently unrotated but also missing the m1.

4.2.3 n=4, d=3

Unrotated form of expected message function:c1(∆x)m1m2

r2 + b1
c2(∆y)m1m2

r2 + b2
c3(∆z)m1m2

r2 + b3


Example result from the GNN+EQL:

0.026(∆x)m2

r2

0.026(∆y)m2

r2

−0.026(∆z)m2

r2

0
...
0


Again, the results for these experiments were always un-

rotated but missing the m1.

4.3. 1/r2 Force

4.3.1 n=4, d=2

For reference, here is the unrotated form of the expected
message function again:

φe =

[
c1(∆x)m1m2

r3 + b1
c2(∆y)m1m2

r3 + b2

]
Example results from the GNN+EQL:
Trial 1:

−0.06(∆x)m2

r3

−0.06(∆y)m2

r3

−0.02 (∆x)2

r9 − 0.02 (∆y)2

r9 + 0.01m2

r3

...
0


Trial 2: 

0.04(∆x)m2

r3

0.04(∆y)m2

r3 + 0.01

0.02 (∆y)2

r9 − 0.01m2

r3

...
0


The results from these experiments do not demonstrate

perfect sparsity of messages as in the spring and 1/r force
experiments. However, the most significant message fea-
tures do provide the correct force equation, although m1 is
still missing.

4.4. Examples of Failed Results

To contrast with the successful results shown above, we
provide a few examples of failed results.

4



When the regularization weight is too small, the message
features produced are not sparse in the way we would ex-
pect, and the expressions have too many terms. One setting
where this happened is an experiment using the 1/r force
with regularization weight 0.01:

0.04(∆x)r − 0.41∆x
r − 0.14∆x

r2 + 0.02(∆y) + . . .
0.02(∆x)r + 0.2(∆x) − 0.22∆x

r + 0.02∆x
r2 + . . .

...


On the other hand, when the regularization weight is set

too large, the resulting message features all get squeezed to
0 and carry no information. A setting where this happened
is an experiment using the 1/r2 force with regularization
weight 10. The message function produced was simply:

0
0
...
0


To demonstrate the difficulty of recovering the 1/r2

force, here is an incorrect result from one of the trials run
with the same parameters that produced the correct result in
a different trial (see Section 4.3.1):

−0.05(∆x)m2

r3

−0.01(∆x)m2

r3 − 0.06(∆y)m2

r3 + 0.01
0
...
0


To improve the results for the 1/r2 force, we also tried

using 3 hidden layers and adding skip connections to the
EQL, which we discuss in the next section (5). However,
this did not succeed. Here are examples of incorrect
message features produced using regularization weight 0.1
and no skip connections in the last hidden layer:

Trial 1: 
0.014 − 0.05

r3

0
...
0


Trial 2: 

−0.02(∆x)m2 + 0.031 − 0.09
r3

−0.03(∆x)m2 + 0.01
0.02(∆x)m2

0.012
0
...
0



5. Discussion

To summarize, the integrated GNN+EQL model pro-
duced the correct force equations for the spring, 1/r, and
1/r2 forces. However, the equations for the 1/r and 1/r2

forces were missing the m1 term and the 1/r2 message fea-
tures were not perfectly sparse in those aside from the d
most significant output features.

It makes sense that the model was most successful on
experiments with the spring force because its expected
message function has the simplest composition of vari-
ables, i.e. there is only a product of two input variables
(like ∆x · 1

r ), while the expected message function for the
1/r force contains a product of five input variables (as in
∆x ·m1 ·m2 · 1

r · 1
r ). The underlying reason for this is that

the complexity of functions that the EQL network is able
to represent is limited by the number of hidden layers and
the choice of activation functions. As detailed in Section
3.2, the EQL within the integrated model had 2 hidden lay-
ers for all experiments. This combined with the choice of
activation functions means that the largest composition of
variables that the EQL could possibly produce is a product
of four input variables. This may explain why the m1 term
is missing from the extracted equations for the 1/r force.

As for the 1/r2 experiments, the correct message func-
tion requires the EQL to produce a product of exactly four
input variables: ∆x ·m1 ·m2 · 1

r3 , which proved to be dif-
ficult. This may also explain the absence of the m1 term
from the extracted equations.

To expand the expressiveness of the EQL network, we
can increase the number of hidden layers from 2 to 3. How-
ever, this makes the EQL much harder to train, and it be-
comes trickier to enforce sparsity. Experiments conducted
using 3 hidden layers were not successful. We also explored
adding skip connections between the hidden layers to en-
courage the model to find simpler functions, but it did not
produce the correct equations.

6. Conclusions

This work demonstrated an extension of the Equation
Learner (EQL) network to the problem of predicting parti-
cle interactions by integrating the EQL with a Graph Neural
Network (GNN) deep learning architecture. The resulting
model successfully and consistently produced the correct
force equation in experiments with the spring force, and
nearly correct equations in experiments with the 1/r and
1/r2 forces. Notably, the integrated GNN+EQL model is an
improvement over existing work because it can be trained
end-to-end and does not require separate symbolic regres-
sion, and it is able to produce a simplest, unrotated form
of the force equation for particles interacting under a spring
force. A limitation of the current model is that the EQL net-
work within only contains 2 hidden layers, which constrains

5



the complexity of the functions it can produce; although an
EQL network with 3 hidden layers can produce more com-
plex functions, that model is much more difficult to train.

Future work may further investigate skip connections
and other ways to increase the expressiveness of the EQL
network so that it can more easily represent functions of
greater complexity. We have also received a suggestion
to try variations of this GNN+EQL model architecture that
take greater advantage of the graph structure, i.e. by intro-
ducing asymmetry into the graph rather than having a fully
connected graph. Finally, there is more potential for the
EQL network to be integrated into other deep learning ar-
chitectures, such as the Siamese Neural Network.

References
[1] G. Martius and C. H. Lampert, “Extrapolation and

learning equations,” oct 2016.
http://arxiv.org/abs/1610.02995 1

[2] S. S. Sahoo, C. H. Lampert, and G. Martius, “Learning
Equations for Extrapolation and Control,” jun 2018.
https://arxiv.org/abs/1806.07259 1

[3] S. Kim, P. Y. Lu, S. Mukherjee, M. Gilbert, L. Jing,
V. Čeperić, and M. Soljačić, “Integration of Neural
Network-Based Symbolic Regression in Deep Learn-
ing for Scientific Discovery,” dec 2019.
https://arxiv.org/abs/1912.04825 1

[4] M. Cranmer, A. Sanchez-Gonzalez, P. Battaglia, R. Xu,
K. Cranmer, D. Spergel and S. Ho, “Discovering Sym-
bolic Models from Deep Learning with Inductive Bi-
ases,” jun 2020.
https://arxiv.org/abs/2006.11287 1, 2, 3

6

http://arxiv.org/abs/1610.02995
https://arxiv.org/abs/1806.07259
https://arxiv.org/abs/1912.04825
https://arxiv.org/abs/2006.11287

