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Abstract

Humans can make efficient navigation decisions based on their
goals and corresponding time horizons. Algorithms can do
so as well; however, their results do not always match hu-
man ones. How can we create algorithms that more closely
match human behavior? In this paper, we investigate the ex-
ploration vs. exploitation strategy components of the search-
and-rescue mission. In particular, we focus on how players
change their strategies in response to varying time limit con-
straints and time-cost functions.
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Introduction
For humans to plan an agent in a search-and-rescue mission,
the path they take depends greatly on the timeout factor as
well as the expected value from exploring locations to rescue
victims.

We are studying the maze orienteering problem in the con-
text of a search-and-rescue mission, where an agent must ex-
ecute sequential decisions in a spatial environment in order
to rescue victims. This investigation will allow us to bet-
ter understand how humans plan so that we can design more
human-like planning algorithms, which would aid in inverse
planning inference and the creation of virtual agents who can
assist humans in planning tasks.

A theoretical signature of adjusting planning strategy to
time-horizon is switching to shallower planning horizon as
time-out approaches, in contrast to planning ahead while the
time-out is still far in the future. We can test whether peo-
ple respond to approaching time-out in line with this theoret-
ical prediction. Game theoretic settings – such as sequential
prisoners dilemma games demonstrate that humans indeed
modify their strategy depending on time horizon, but this has
not yet been tested in spatial planning contexts (Embrey, )
(Bigoni, ).

Our project mainly follows from two related works. In one
study, the search-and-rescue mission was modeled as an ori-
enteering problem on the room level and POMDP within the
rooms (Yang, ). Interestingly, simple heuristics explained hu-
man behavior better than more complex ones — directional
models worked particularly well.

In the second related work, the authors applied decision-
making principles from gambling tasks to the problem of se-
quential decision-making in a maze search task (Kryven, ).
They investigated expected utility maximization, discounted

future utility, weighted probability utility, and the combina-
tion of the three as computational models to explain human
planning behavior. In addition, they also evaluated a few
short-sighted heuristics. While overall the combined model
explained the human behavioral data the best, some individ-
uals’ actions were random or best explained by one of the
heuristics, so many open questions remain.

In our paper, we compute discounted expected future util-
ity in the search-and-rescue problem from the first paper in
order to try to explain human behavior. We find that hyper-
bolic cost with larger timeouts seems to qualitatively fit with
expected human behavior. Future work in combining our be-
havioral and model results will allow us to explore this more
quantitatively. Our simulation code and figures produced by
the model can be found here, and code for the behavioral ex-
periment can be found here.

Methods

Figure 1: Example of search and rescue task maze. Each
dotted line represents an initial trajectory the agent can take.
The starting cell is highlighted in green, the hidden cells in
gray, the victim cells in pink, and the walls in brown.

Search and Rescue Task
In the Search and Rescue task, an agent is placed within a
grid world formatted as a maze, with cells that are 1) open
cells (colored in white), 2) hidden cells (gray), 3) victim cells
(pink), and 4) walls (brown). An example is shown in Figure
1. Each cluster of hidden cells represents a room, each of
which can contain up to one victim. An agent can see and
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move down paths consisting of open cells, but it cannot see
or move through walls. In addition, it can take two actions —
exploring a room and rescuing a victim. Exploring a room is a
prerequisite to being able to rescue a victim. After exploring
a room, all hidden cells in the room are revealed to become
open cells.

Each agent is given a time limit to complete each task. The
task terminates when either the time limit runs out or all vic-
tims have been picked up.

Computational Models
To plan a search trajectory, we create a tree with nodes storing
the current position of the agent and state of the map so far.
Each child of the node represents a new state where the agent
has moved to a different position from the current position
and made new observations.

We use Discounted Expected Utility to compute the utility
at each node. At each node, the agent discovers and explores
some number of hidden cells. Depending on the agent’s ob-
servation at that point, there are two resulting outcomes —
one where the room contains a victim and the other where
it does not. The agent has full observability. If the room
contains a victim, the agent can either pick up the victim or
not pick up the victim. In the case of picking up the victim,
the agent reaps an exploration reward and a victim reward,
both of which are functions of the size of the room. We then
subtract the time cost and add the maximum expected future
utility from continuing on to child nodes of the tree. The
equation is as follows:

Q(Ni) =pi ·max((1+α)nir − c(si + ei + k)+ γmax
j

Q(N j),

αnir − c(si)+ γmax
j

Q(N j))+

(1− pi) · (αnir − c(si)+ γmax
j

Q(N j))

(1)
where pi is the probability of finding a victim in the room,

si is the number of steps to get to the node, ei is the expected
number of steps to get to the victim, c(t) is the cost function,
ni is the room size, and max j Q(N j) is the maximum expected
value of the children nodes of Ni.

Note that pi becomes either 0 or 1 upon the agent discov-
ering a room and observing whether or not the room contains
a victim. When calculating expected utility, we assume that
each hidden cell has equal probability of hiding a victim, so
pi is the number of cells in the discovered room divided by
the total number of hidden cells originally in the map. To cal-
culate ei, we assume that the victim is located at the centroid
of the room, and calculate the Manhattan distance from the
agent’s position to that location.

In addition, we set r = 1.0 to be the reward for picking
up each victim, α = 0.2 to be the ratio of exploration reward
to victim reward (so exploration reward is 0.2× 1.0 = 0.2),
and k = 5 to be the number of steps needed to pick up a vic-
tim (in order to model the fact that picking up a victim takes

extra time). We assume that each step taken by the agent is
equivalent to 400 ms, which is the average time it takes for
a human participant to click on a grid space when doing this
search-and-rescue task.

We track the number of steps to reach the node for each
trajectory. If the number of steps taken is equivalent to a time
exceeding the set timeout, the value of the node is zero.

We explore three different settings for the cost function,
which penalizes the agent using a “subjective cost” that is
calculated as function of true cost (the amount of time taken).

Figure 2: Different costs as a function of time. The green line
represents the inverse hyperbolic cost function, the blue line
the linear cost function, and the red line the hyperbolic cost
function.

Linear
C(t) =t (2)

With a linear cost function, true and subjective costs are
equal.

Hyperbolic

C(t) =
1
2
(et − e−t) (3)

With a hyperbolic cost function, at relatively low values
of true cost, the increase in subjective cost is smaller than
actuality. In other words, the agent perceives less-than-actual
cost near the beginning of the task. Here, we use sinh as our
hyperbolic function.

Inverse Hyperbolic

C(t) = ln t +
√

t2 +1 (4)

With an inverse hyperbolic cost function, at relatively low
values of true cost, the increase in subjective cost is greater
than actuality. So the agent perceives greater-than-actual cost
near the beginning of the task. Here, we use inverse sinh as
our hyperbolic function.



In order to make the three cost functions comparable, we
scale the hyperbolic and inverse hyperbolic functions such
that all three functions output the same subjective cost at
timeout.

In order to compute the best path given a cost function,
at each node, the agent greedily decides whether to rescue a
victim (if one is found) based on the calculated node value,
and it selects the child node with the best expected value to
continue on its exploration path.

Mazes
For the Search and Rescue task we created mazes with blank
open hallways, rooms that are clusters of black squares, and
hidden red square victims under the black squares. We over-
all attempted to create maps where the participants of the ex-
periment are forced to make decisions between rooms and
routes to maximize their utility. The mazes are all between
60 and 100 total squares big because we wanted to fit the
maze on one page and not make participants overwhelmed
with a map too large. However, we also couldn’t make the
maze too small so that the users take different routes and pro-
vide us with more of an opportunity to learn more from their
decision making. The mazes also each contain three or four
rooms, clusters of black squares, and at least two victims, red
squares. These features were to further promote variance in
routes.

Figure 3: Example of maze from experiment. Blue circle
with eyes is the agent, white squares are open halls to move
through, black clusters represent rooms, and red squares are
victims. On the left is the test maze initially given to a par-
ticipant. On the right is how the same maze would look if
participants explored all rooms

In Figure 3 above, our example maze is on the left and on
the right is what the participant would see if they explored
all of the rooms. With this maze, we tried to emphasize the
user’s decision to maximize utility under a time constraint by
either going up and checking for a victim or skip the above
one and check the two rooms below for victims. If the user
goes up, they have to take 4 steps up to check and realize
that there are no victims there, before taking 4 steps back
down to the original starting spot. If the user goes down,
they must take a total of 7 steps to check for victims in both

rooms. The participant is forced to weigh the option of going
up to explore a room of two squares in eight total steps against
the option of going down first and potentially exploring four
black squares in all and delaying the exploration of the top
part of the maze, all while determining what is possible in the
given time constraint. This maze layout and others were made
to maximize trade off possibilities and give us insight into
how participants may decision make under time constraints.

Limitations of the Models

Note that our model is simplified in two key ways. First of
all, for each room that the agent stops by, the agent must ex-
plore the room. It cannot stop by a room and then move on
to the next room. However, for the most part, this shouldn’t
overly limit our model’s expressiveness — if it values going
to another room, it should prioritize that room in its path se-
lection. The only case in which this would be relevant is when
the time cost for exploration is much larger than the potential
victim reward for all rooms; however, this is an edge case that
shouldn’t occur for a well-designed maze.

Secondly, the agent cannot receive additional exploration
reward for any hidden cells that it has revealed previously,
but it can receive an exploration reward for just the victim
cell. This reward structure was mainly due to the way our
model was built, but led to interesting behavior that we will
discuss more in the next section.

Behavioral Experiment

To study if human planning follows realistic goal-setting, we
created a behavioral experiment task. Though we ran out of
time to collect experimental data from human trials, we will
outline our plans of experimenting.

We would first select a sample of about 15 participants of
male and females across all age groups. For each participant
we would give them the link to our experiment and ask that
they complete it in a quiet, distraction free setting. The first
page they will get when opening the link is a brief set of in-
structions that explain how our study will operate as well as
an Informed Consent statement that states how participation
is voluntary and anonymity is assured.

If they agree to these terms, the next page will provide
more detailed instructions. A participant then clicks Continue
and start the practice mazes. For each practice maze, it will
look exactly the same as a test maze, except more detailed
instructions at the top.



Figure 4: One of the three Practice Mazes shown for partici-
pants to learn the task.

After the three practice mazes, there is a two question quiz
to make sure the user understands the task. The study will not
continue until the correct answers are chosen.

Figure 5: Brief Quiz that is shown after the three practice
mazes. A participant must answer questions correctly for the
study to continue.

There are then ten test mazes. For a maze, the participant
will be able to see a counter for how many victims have been
saved, a timer for how much time is left, and fraction such as
7/10 to indicate they are on the seventh of ten mazes. For each
maze, the time limit will be set to two times the maze’s width
of squares or move to the next page if all victims are found
before time’s up. The path and performance data of partici-
pants is automatically saved to a database for later analysis.

Figure 6: Test maze example. Includes a counter for how
many victims saved, a timer for how much time is left, and 3
of 10 indicates being the third of ten test mazes.

Afterwards there is a page that says Thank you! and asks
the participant ”How did you make your decisions about
which way to go?” with an answer box provided. This helps
us qualitatively understand the participant’s decision making.
Next there is a final page with three questions to again take
qualitative input to be used during analysis.

Figure 7: final page with three questions to again take quali-
tative input to be used during analysis



and the experiment is done!

Model-based Analysis
Because we haven’t had the opportunity to conduct trials,
we will outline what are model based analysis would look
like. We would use both Maximum Likelihood Estimation
and 4-fold Cross Validation to best fit the model’s parame-
ters to each each individual’s decisions. Using this methods,
we would get parameter estimates and analyze them by mea-
suring bootstrapped correlations between all of the predicted
choice probabilities, the given median parameters fitted to the
entire subject population, and empirical choice frequencies
aggregated over subjects. For the 4-fold Cross Validation, we
would first split each of the participants’ decisions into and
80 percent train and 20 percent test split, then with four cross-
validation folds, fit the models to the training set data and use
the held out test data to validate the fit. Based on these re-
sults, we would be able to tell what strategy or combination
of strategies was most popular. We hypothesize that of the
cost functions, the hyperbolic cost function most accurately
describes human behavior. Based on initial qualitative obser-
vations, we thought participants would rush noticeably more
as time runs out and so it seems time becomes more valuable
as timeout approaches.

Results & Discussion
In our experiment, we varied two main parameters: the cost
function and the timeout. An increased timeout should allow
the agent to explore more rooms to potentially rescue more
victims. The cost function, on the other hand, determines the
penalty incurred per unit of time. We consider three main cost
functions: linear, hyperbolic, and inverse hyperbolic. For lin-
ear cost, the true cost is the same as the subjective cost, but
for the hyperbolic, the agent is penalized a less-than-actual
cost at the beginning of the task whereas for the inverse hy-
perbolic, the agent is penalized a greater-than-actual cost at
the end of the task. We would expect the agent under hyper-
bolic cost to explore more at the beginning end of the task
and the agent under inverse hyperbolic cost to explore more
at the end of the task.

Costs
In Figure 8 above, the best path trajectories under different
cost functions are shown. The pink squares represent victims
that are not picked up whereas the green squares represent
victims that were picked up by the agent. The line segments
in the figure are labeled in the legend by the step number.

The step by step trajectory for the linear cost path is shown
in Figure 3 — the agent moves from its starting point to the
closest victim, picking it up. Because it is still able to gain
exploration reward from the victim cell and has extra time,
it goes back and forth before exploring the two rooms to its
right. However, it runs out of time before it is able to pick up
its next victim, leaving one on the map.

Similarly, in Figure 9a, the trajectory for the hyperbolic
cost path is shown. The agent takes the longer path to explore

Figure 8: Best path trajectories. This figure shows the trajec-
tories of the agent under different time costs with a 5s time-
out. The legend shows the time ordering of the trajectories.

the first room, which positions it more closely to the other two
rooms. However, after reaching that room, the agent picks up
the victim, and chooses to take the guaranteed exploration re-
ward over exploring the two rooms to the right. This follows
our intuition that as time progresses, the agent becomes less
willing to explore and more willing to exploit a guaranteed
reward.

Interestingly, the inverse hyperbolic cost path (Figure ??)
takes the same path as the linear cost path.

As a whole, the trajectories computed with the inverse hy-
perbolic and linear cost functions are very similar — this
makes sense because the differences in those two cost func-
tions, as shown in Figure 8, are much smaller than the differ-
ences between them and the hyperbolic cost function. Linear
and inverse hyperbolic tend to achieve a higher value com-
pared to hyperbolic. However, we hypothesize that human
behavior more closely follows the trajectory with hyperbolic
cost — as the timeout approaches, time becomes more valu-
able.

Timeout
We also observed how the agent’s path through the mazes
changed when given a 5 second timeout vs. a 10 second
timeout. Below are some specific examples that demonstrate
trade-offs between exploration and victim reward that the
agent makes when faced with a shorter or longer time hori-
zon.

In map 1, there is a hidden cell with a victim located around
the corner at the lower left of the maze. In the case of the lin-
ear cost function, the longer timeout of 10s allows the agent to
discover this hidden victim, while it does not discover the vic-
tim when the timeout is 5s, generally showing that the agent is
able to explore and discover more with a longer time horizon.
See Figures 10a and 10b for the comparison.



(a) Linear cost path.

(b) Hyperbolic cost path.

(c) Inverse hyperbolic cost path.

Figure 9: Step-by-step path trajectory under different cost
functions. In a), the linear cost path is shown. The agent takes
the shortest path to the nearest victim and stays there for sev-
eral steps to get the exploration reward before moving to the
other room to get the exploration reward. The agent runs out
of time before picking up the next victim. In b), the hyper-
bolic cost path is shown. The agent takes a slightly longer
path to the closest victim compared to the linear cost path,
which positions it closer to the second room. However, the
agent chooses not to explore it, remaining in the first room.
In c), the inverse hyperbolic cost is shown, with the same tra-
jectory as the linear cost path.

(a) 5s timeout

(b) 10s timeout

Figure 10: In a), the linear cost path for map 1, with a 5s
timeout is shown. The agent explores two rooms and picks
up one victim. In b), the first two steps of the linear cost path
with a 10s timeout is shown. In this case, the agent explores
the closest room that was not previously explored, picking up
a victim there before also exploring the next room and picking
up a victim there as well.

Also in map 1, with the hyperbolic cost function, we see
that the agent opts to only collect exploration reward in the 5s
timeout setting, presumably because the victim reward is not
worth the time cost of picking up the victim (see Figure 11a).
Compare this to the 10s timeout setting, where the agent does
rescue victims (see Figure 11b).

Map 3 presents an interesting setting since there are two
hidden rooms that are both 6 steps away from the agent’s
starting position. However, the rooms are different in shape
with the lower room being long and skinny, so the expected
number of steps to reach the victim is much greater in that
room. In the case of linear cost, we compare the agent’s path
with 5s timeout to the path with 10s timeout (see Figures 12a
and 12b). When faced with the shorter horizon, the agent
chooses to explore the upper room first, but with the longer
horizon, it first goes to the lower room. This makes sense be-
cause the cost of each step increases as time goes on, so it is
more efficient for the agent to take more steps at the start of
the task, which it is able to do with a longer time horizon.

For map 5, when faced with the hyperbolic cost function,
the agent’s strategy changes when it has a longer time hori-
zon. In the 5s timeout case, it opts to first explore the closer
room, and then the farther hidden room, which offers a greater
exploration reward (see Figure 13a). In the 10s timeout case,
though, it decides to expend more steps to go for the greater
exploration reward first (see Figure 13b). This effect doesn’t



(a) 5s timeout

(b) 10s timeout

Figure 11: In a), the hyperbolic path for map 1 with a 5s time-
out is shown. The agent explores all the rooms but does not
pick up any victims. In b), selected steps for the hyperbolic
path with 10s timeout is shown. The agent explores only two
rooms but picks up victims it sees.

(a) 5s timeout

(b) 10s timeout

Figure 12: Map 3 is interesting since the two hidden rooms
present differing numbers of expected steps to reach a victim
if there is one hidden in the room. In a), the first two steps of
the linear path for map 3 with 5s timeout is shown. The agent
chooses to explore the upper room first. In b), the first three
steps of the linear path for map 3 with 10s timeout is shown.
The agent explores the lower room first.

occur with the linear and inverse hyperbolic cost functions,
which makes sense since the hyperbolic function offers a
much lower time cost at the beginning of the task.

Exploration vs Exploitation
After discovering a victim, the agent has two strategies it can
take. The first is exploiting the exploration cost for remaining
within line of sight for the victim, a reward that it can guaran-
tee. The second is exploring other rooms to potentially find
other victims. In the maps that we observed, we found the
agent using a combination of both strategies.

In Figure 14 below, we can see that after finding the first
victim, the agent chooses to exploitation over exploration, re-
maining within line-of-sight of the victim to achieve the guar-
anteed reward for a time instead of branching out to explore
more rooms.

We can see the opposite behavior in 10b in the previous
section. The increased time horizon allows the agent to ex-
plore all the rooms and pick up all the victims in the map
instead of just choosing to stay in one place.

Future Work
Model
In the future, we’d like to extend our model in a couple of
ways. First, in our results above, linear and inverse hyperbolic
cost functions produced much of the same behavior, poten-
tially because the structures of the functions were very simi-
lar (see Figure 2). We’d like to experiment with some other
forms of the inverse hyperbolic function to see if we can ob-
serve a greater difference in the trajectories. In addition, with
our current scaling, the cost at the timeout is consistent across



(a) Hyperbolic cost path for map 5 with 5s timeout

(b) Hyperbolic cost path for map 5 with 10s timeout

Figure 13: In a), the hyperbolic path for map 3 with 5s time-
out is shown. The agent chooses to explore the closer room
first. In b), the hyperbolic path for map 3 with 10s timeout
is shown. The agent first explores the farther room, which
offers a greater exploration reward.

Figure 14: Linear cost path for map 6 with 5s timeout. The
agent chooses exploitation over more exploration after find-
ing the victim on the right side of the map.

all cost functions. However, for any given time t that is not 0
or timeout, the inverse hyperbolic function always has value
greater than the linear function, which is always greater than
the hyperbolic function. We’d like to try scaling the functions
such that area under the curve is the same instead.

Secondly, our currently reward structure gives an explo-
ration reward for the victim when the agent is in sight of it,
even when the victim has already been picked up. While in
the real-world, this could be useful for scenarios in which vic-
tims are injured and require some monitoring and provides
some exploration vs exploitation trade-offs, we’d also like to
test trajectories in which the exploration reward is provided
only once for the victim, the first time it is seen.

In this paper, we primarily explore different settings of the
cost function and timeout. There is also potential in exploring
variations in other parameters that we treated as constants,
such as the ratio of exploration reward to victim pickup re-
ward and various settings for gamma, the discount factor. Our
code also currently only runs on smaller maps with shorter
timeout periods, but we’d like to optimize it to explore a
greater variety of maps in the long-run.

Finally, we’d like to create some random agents or
heuristic-driven agents to compare a greater variety of pos-
sible trajectories.
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